
intelligent Digital Systems Lab

fpgaConvNet: A Toolflow for Mapping Convolutional Neural 
Networks on Embedded FPGAs

Dept. of Electrical and Electronic Engineering

Dr. Christos-Savvas Bouganis

Marionet UK Many-core Research Network
11th of September, Bristol University, UK

intelligent Digital Systems Lab

www.imperial.ac.uk/idsl



intelligent Digital Systems Lab

Stylianos I. Venieris
Machine Learning

Alexandros Kouris
Machine Learning,
Robotics

Konstantinos Boikos
Computer Vision,
SLAM

Christos-Savvas Bouganis
iDSL Lab Director
Imperial College London

Manolis Vasileiadis
Computer Vision

Mudhar Bin Rabieah
Machine Learning

Nur Ahmadi
Brain-Machine Interface

The team



intelligent Digital Systems Lab

DNNs in the Embedded Space – Variability in Performance Requirements

High-Throughput Applications Low-Latency ApplicationsMultiobjective Applications

?

surveillance

Smart homes/cities

Aerial Monitoring

Scene Understanding

Autonomous Driving
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Power constraints
• Absolute power consumption
• Performance-per-Watt

High-Throughput Applications

Low-Latency Applications

Multiobjective Applications

?

surveillance

Smart homes/cities

Aerial Monitoring

Scene Understanding

Autonomous Driving

DNNs in the Embedded Space – Variability in Performance Requirements
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GPUs – Tegra K1, X1 and X2
DSPs – Qualcomm Hexagon, 

Apple Neural Engine, …

Conventional and Unconventional Embedded Platforms for Neural Networks

✓ High throughput
✗ Low latency
✗ Low power

Challenge: Huge design space
Our Approach: Automated toolflows5

✓ Tools ✗ Tools

FPGAs
• Custom datapath
• Custom memory subsystem
• Programmable interconnections
• Reconfigurability

✓ High throughput
✓ Low latency
✓ Low power

FPGA

Look-Up 
Tables

Flip Flops

DSP Blocks

On-chip 
RAM

External Memory 
(DRAM)

customisation

TPU

GraphCore

Myriad X
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Research Areas / Challenges

Mapping Automation

Multiple CNN Mapping
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Challenge #1: 
Mapping 
Automation
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Challenge #1: Mapping Automation

Deep Learning Developers

Little knowledge about FPGAs
Ease of deployment
“Good” designs

Challenges:
• Learn to design hardware
• High-dimensional design space
• Diverse application-level needs
• High utilization of  the FPGA resources
• Design automation (+> change of requirements)

Would like to:
– Target FPGAs
– Optimise for 

high performance
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Network Description FPGA Target Platform 
Specifications

Automated Design 
Space Exploration

Network Hardware 
Mapping

Supplied by 
Deep Learning Expert

Performance 
Requirements

fpgaConvNet

Challenge #1: Automated CNN-to-FPGA Toolflow
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fpgaConvNet – CNN Modelling Framework

Key Characteristics

• Differentiation factors:
• Streaming architecture
• Hardware design tailored to the target CNN
• No limit on #weights, or size of CNN

Streaming

Analytical Power

Customisation

duce the feature maps matrix, Fmap, and the data matrix,
P , and form the work matrix, W as shown below.

W = Fmap � P

To find the initiation interval of each block, it su�ces to
divide W by �, element by element.

II = W ↵ �
where II is the initiation interval matrix. Each element
of II gives the number of cycles required by each hardware
block along the pipeline to consume its workload. The block
with the longest initiation interval determines the initiation
interval of the whole SDFG and can be found as the maxi-
mum element of II, denoted by II

max. The execution time
for a batch of B inputs can be estimated by Eq. (4).

t(B,�) =
1

clock rate

· (D + II

max · (B � 1)) (4)

where D is the maximum between the size of the input, e.g.
the size of an image, and the pipeline depth of the SDFG.
In the case where graph partitioning with reconfiguration
is introduced and the SDFG is partitioned into subgraphs
that are executed sequentially after FPGA reconfiguration,
the overall execution time can be estimated by summing the
execution times of all the subgraphs. For this case, we ex-
tend the notation of Eq. (4) with ti to denote the execution
time of the ith partition. Between consecutive subgraphs,
the overhead for the ith reconfiguration, ti,reconfig., has to
be included. Eq. (5) gives the total execution time for NP

partitions.

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) +
NP�1X

i=1

ti,reconfig. (5)

where �i is the topology matrix of the ith partition. By
assuming full reconfiguration of the FPGA, ti,reconfig. can
be considered constant for all i. In this case, Eq. (5) can be
simplified as:

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) + (NP � 1) · treconfig. (6)

Eq. (6) shows that the reconfiguration overhead is indepen-
dent of the batch size, B. Therefore, by either increasing
the batch size or the size of the inputs, the first term dom-
inates the execution time and the cost of reconfiguration is
amortised. In practice, the upper bound of B is limited by
the capacity, Cmem, of the o↵-chip memory and we cap its
maximum value to this bound.

For low-latency applications, weights reloading is utilised
in place of graph partitioning with reconfiguration. In this
case, we have a single �ref matrix representing the de-
rived reference design and di↵erent workloads for each of
the NP subgraphs which are scheduled sequentially. When-
ever the data have to enter the ith subgraph, the overhead,
ti,weights, of the transfer of the subgraph’s weights from the
o↵-chip memory has to be included and is calculated using
the amount of subgraph’s weights and the memory band-
width. Eq. (7) gives the overall execution time in the case
of a low-latency design with weights reloading.

ttotal(M,NP ,�ref ) =
NPX

i=1

ti(M,�ref ) +
NPX

i=1

ti,weights (7)

Finally, the throughput of an implementation of a particu-
lar ConvNet in GOp/s which requires WConvNet GOp/input
can be estimated as in Eq. (8) and its latency in s/input as
in Eq. (9).

Algorithm 1 Workload Alignment for Weights Reloading
Inputs:

1: Dimensions (M ⇥N) of the reference �ref

2: Index i of the subgraph to be aligned

3: Workload matrix W i 2 RK⇥L

4: Shift vector si 2 ZL
with the alignment shifts for each column

5: Identity matrices Ir
N⇥N and Il

M⇥M

6: Lower shift matrices Sr
N⇥N and Sl

M⇥M

Steps:

1: W aligned
=

h
W i

0(M�K)⇥L
,0M⇥(N�L)

i

2: for all col in the i

th
subgraph that need alignment do

3: - - - Align along the pipeline, (right shift) - - -

4: - Form right alignment matrix Ar 2 RN⇥N
-

5: Ar
=


Ir
1:col�1,S

r
col:col+si

col

, Ir
col+si

col
+1:N

�

6: - Update the overall right alignment matrix -

7: Ar
o = Ar ·Ar · ... ·Ar

| {z }
si
col

8: W aligned
= W aligned ·Ar>

o
9: - - - Align the interconnections (down shift) - - -

10: - Form left alignment matrix Al 2 RM⇥M
-

11: Al
=


Il
1:col�2,S

l
col�1:col+si

col
�1

, Il
col+si

col
:M

�

12: - Update the overall left alignment matrix -

13: Al
o = Al ·Al · ... ·Al

| {z }
si
col

14: W aligned

col:col+si
col

= Al
o ·W aligned

col:col+si
col

15: end for

Note: The subscript start:end denotes a range of columns.

T (B,NP ,�) =
WConvNet

ttotal(B,NP ,�)/B
(8)

L(B = 1, NP ,�) = ttotal(1, NP ,�) (9)

5.5 Workload Alignment
In the weights reloading transformation, when a subgraph

is mapped to the reference architecture, the execution of
its layers is scheduled on the instantiated building blocks.
For a reference design and a subgraph with N and L build-
ing blocks respectively, we have a topology matrix �ref 2
RM⇥N and a workload matrix W i 2 RK⇥L for the ith

subgraph, where K  M and L  N . In order to calcu-
late the execution time ti(B,�ref ) of the ith subgraph on
the reference architecture, the columns of W i have to be
aligned so that they map on the correct column of �ref .
To achieve this, a new matrix W aligned 2 RM⇥N is con-
structed which contains the rows and columns of W i with
the correct alignment. After W aligned has been created,
the ith initiation interval matrix can be computed correctly
as IIi = W aligned ↵ �ref and used for the calculation of
ti(B,�ref ) as described in Section 5.4.
Our adoption of the SDF paradigm enables us to express

the workload alignment algebraically as described by algo-
rithm (1). In this way, the weights reloading transformation
can be applied analytically and is smoothly integrated with
the rest of the defined transformations over the SDFG.

5.6 Optimisation
The developed optimiser of our framework aims to deter-

mine a design point that optimises the performance metric
of interest for the target application given a ConvNet work-
load and the available resources. In this context, we pose
two combinatorial optimisation problems, aiming for high-

Max Throughput or Min Latency

Performance

Resources

• Synchronous Dataflow Modelling for CNNs
− CNN as a data-driven graph
− Workload is represented as a matrix
− Each layer mapped to a tunable set of hardware building 

blocks

• Design space exploration based on transformations
• Coarse-grained folding
• Fine-grained folding
• Graph partitioning with reconfiguration
• Weight Reloading
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Under the hood: Convolutional Neural Networks (ConvNets)

11

convolution
+ nonlinearity

pooling convolution
+ nonlinearity

pooling

• ConvNet Inference
– Tailored to images and data with spatial patterns

– Built as a sequence of layers (Convolutional, Nonlinearity and Pooling Layer)

– Feedforward operation

– Inherently streaming
Multiple dot 

products
Nonlinear 
Operator

Max or average 
in a vector
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fpgaConvNet – Streaming Architecture for CNNs
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Window
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Window
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Memory 
Interface
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Fork

Convolutional Layer
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fpgaConvNet – Streaming Architecture for CNNs
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CNN Hardware SDF Graph
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Design Space

Current Design
PointFPGA 2

FPGA 1Complex Modelè Bottlenecks:
− Limited compute resources
− Limited on-chip memory capacity for model parameters
− Limited off-chip memory bandwidth

Define a set of graph transformations to traverse 
the design space in fast and principled way
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Transformation 1: Coarse-grained Folding

Src Sliding 
Window Fork

Conv Unit

Conv Unit

Conv Unit

Conv Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Nonlin
Unit

Sliding 
Window

Sliding 
Window
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Window
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Window

Pool Unit
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Sliding 
Window

Sliding 
Window

Sliding 
Window

Sliding 
Window

Fork

Fork

Fork

Fork

4 Convolutions/cycle

1) Exceeding the available compute 
resources

2) Not enough off-chip memory 
bandwidth
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Transformation 1: Coarse-grained Folding

Src Sliding 
Window Fork

Conv Unit

Conv Unit

Nonlin
Unit

Nonlin
Unit

Sliding 
Window

Sliding 
Window

Pool Unit

Pool Unit

Sliding 
Window

Sliding 
Window

Fork

Fork

2 Convolutions/cycle

Compute Resources

Required Bandwidth
Transformation 2

Fine-grained Folding



intelligent Digital Systems Lab

Transformation 3: Graph Partitioning with Reconfiguration

7x7 Conv, 16

5x5 Conv, 64

3x3 Conv, 256

ReLU

ReLU

ReLU

2x2 Max Pool

2x2 Max Pool

Input Data

1) Exceeding the available 
compute resources

2) Not enough on-chip 
memory capacity FPGA Reconfiguration
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Transformation 3: Graph Partitioning with Reconfiguration

7x7 Conv, 16

5x5 Conv, 64

3x3 Conv, 256

ReLU

ReLU

ReLU

2x2 Max Pool

2x2 Max Pool

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

1) Exceeding the available 
compute resources

2) Not enough on-chip 
memory capacity FPGA Reconfiguration
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Transformation 3: Graph Partitioning with Reconfiguration

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

Architecture 1 Architecture 2 Architecture 3

• Reconfigure FPGA
• Run network over batch
• Write-back to off-chip 

memory
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Transformation 3: Graph Partitioning with Reconfiguration

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

• Reconfigure FPGA
• Run network over batch
• Write-back to off-chip 

memory

Architecture 1 Architecture 2 Architecture 3
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Transformation 3: Graph Partitioning with Reconfiguration

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

• Reconfigure FPGA
• Run network over batch
• Write-back to off-chip 

memory

Architecture 1 Architecture 2 Architecture 3



intelligent Digital Systems Lab

Transformation 3: Graph Partitioning with Reconfiguration

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

• Reconfigure FPGA
• Run network over batch
• Write-back to off-chip 

memory

Architecture 1 Architecture 2 Architecture 3

• Batch processing amortises
reconfiguration cost → high throughput

• Latency-sensitive applications?
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Transformation 4: Weights Reloading

7x7 Conv, 16

5x5 Conv, 64

3x3 Conv, 256

ReLU

ReLU

ReLU

2x2 Max Pool

2x2 Max Pool

Input Data

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

Load Conv Layer 2 Weights

Load Conv Layer 3 Weights

time

Run-time vs bitstream-level reconfiguration 
to explore the latency-throughput trade-off



intelligent Digital Systems Lab

Transformation 4: Weights Reloading

Workload 2Workload 1

Conv Layer 1
K: 7x7
S: 1
Nout: 16

Nonlin Layer 1
Type: ReLU
Nout: 16

Pool Layer 1
P: 2x2
S: 2
Nout: 16

Conv Layer 2
K: 5x5
S: 1
Nout: 64

Nonlin Layer 2
Type: ReLU
Nout: 64

Pool Layer 2
P: 2x2
S: 2
Nout: 64

Conv Layer 3
K: 3x3
S: 1
Nout: 245

Nonlin Layer 3
Type: ReLU
Nout: 256

Workload 3

• Reload weights from off-chip memory
and reconfigure datapath

• Run network over batch
• Write-back to off-chip memory

Convolution
Bank
max K: 7x7

Nonlinear 
Bank
Type: ReLU

Pooling 
Bank
max P: 2x2

Generated Reference Architecture

Input 
Data
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fpgaConvNet – Design Space Exploration and Optimisation

• SDF-based Framework

− Capture hardware mappings as matrices

− Transformations as algebraic operations

− Any local transformation propagates 
through the network

− Static Scheduling

− Analytical performance model

− Cast design space exploration 
as a multiobjective optimization problem

Design 1

Design 2

Hardware Stages Interconnections
duce the feature maps matrix, Fmap, and the data matrix,
P , and form the work matrix, W as shown below.

W = Fmap � P

To find the initiation interval of each block, it su�ces to
divide W by �, element by element.

II = W ↵ �
where II is the initiation interval matrix. Each element
of II gives the number of cycles required by each hardware
block along the pipeline to consume its workload. The block
with the longest initiation interval determines the initiation
interval of the whole SDFG and can be found as the maxi-
mum element of II, denoted by II

max. The execution time
for a batch of B inputs can be estimated by Eq. (4).

t(B,�) =
1

clock rate

· (D + II

max · (B � 1)) (4)

where D is the maximum between the size of the input, e.g.
the size of an image, and the pipeline depth of the SDFG.
In the case where graph partitioning with reconfiguration
is introduced and the SDFG is partitioned into subgraphs
that are executed sequentially after FPGA reconfiguration,
the overall execution time can be estimated by summing the
execution times of all the subgraphs. For this case, we ex-
tend the notation of Eq. (4) with ti to denote the execution
time of the ith partition. Between consecutive subgraphs,
the overhead for the ith reconfiguration, ti,reconfig., has to
be included. Eq. (5) gives the total execution time for NP

partitions.

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) +
NP�1X

i=1

ti,reconfig. (5)

where �i is the topology matrix of the ith partition. By
assuming full reconfiguration of the FPGA, ti,reconfig. can
be considered constant for all i. In this case, Eq. (5) can be
simplified as:

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) + (NP � 1) · treconfig. (6)

Eq. (6) shows that the reconfiguration overhead is indepen-
dent of the batch size, B. Therefore, by either increasing
the batch size or the size of the inputs, the first term dom-
inates the execution time and the cost of reconfiguration is
amortised. In practice, the upper bound of B is limited by
the capacity, Cmem, of the o↵-chip memory and we cap its
maximum value to this bound.

For low-latency applications, weights reloading is utilised
in place of graph partitioning with reconfiguration. In this
case, we have a single �ref matrix representing the de-
rived reference design and di↵erent workloads for each of
the NP subgraphs which are scheduled sequentially. When-
ever the data have to enter the ith subgraph, the overhead,
ti,weights, of the transfer of the subgraph’s weights from the
o↵-chip memory has to be included and is calculated using
the amount of subgraph’s weights and the memory band-
width. Eq. (7) gives the overall execution time in the case
of a low-latency design with weights reloading.

ttotal(M,NP ,�ref ) =
NPX

i=1

ti(M,�ref ) +
NPX

i=1

ti,weights (7)

Finally, the throughput of an implementation of a particu-
lar ConvNet in GOp/s which requires WConvNet GOp/input
can be estimated as in Eq. (8) and its latency in s/input as
in Eq. (9).

Algorithm 1 Workload Alignment for Weights Reloading
Inputs:

1: Dimensions (M ⇥N) of the reference �ref

2: Index i of the subgraph to be aligned

3: Workload matrix W i 2 RK⇥L

4: Shift vector si 2 ZL
with the alignment shifts for each column

5: Identity matrices Ir
N⇥N and Il

M⇥M

6: Lower shift matrices Sr
N⇥N and Sl

M⇥M

Steps:

1: W aligned
=

h
W i

0(M�K)⇥L
,0M⇥(N�L)

i

2: for all col in the i

th
subgraph that need alignment do

3: - - - Align along the pipeline, (right shift) - - -

4: - Form right alignment matrix Ar 2 RN⇥N
-

5: Ar
=


Ir
1:col�1,S

r
col:col+si

col

, Ir
col+si

col
+1:N

�

6: - Update the overall right alignment matrix -

7: Ar
o = Ar ·Ar · ... ·Ar

| {z }
si
col

8: W aligned
= W aligned ·Ar>

o
9: - - - Align the interconnections (down shift) - - -

10: - Form left alignment matrix Al 2 RM⇥M
-

11: Al
=


Il
1:col�2,S

l
col�1:col+si

col
�1

, Il
col+si

col
:M

�

12: - Update the overall left alignment matrix -

13: Al
o = Al ·Al · ... ·Al

| {z }
si
col

14: W aligned

col:col+si
col

= Al
o ·W aligned

col:col+si
col

15: end for

Note: The subscript start:end denotes a range of columns.

T (B,NP ,�) =
WConvNet

ttotal(B,NP ,�)/B
(8)

L(B = 1, NP ,�) = ttotal(1, NP ,�) (9)

5.5 Workload Alignment
In the weights reloading transformation, when a subgraph

is mapped to the reference architecture, the execution of
its layers is scheduled on the instantiated building blocks.
For a reference design and a subgraph with N and L build-
ing blocks respectively, we have a topology matrix �ref 2
RM⇥N and a workload matrix W i 2 RK⇥L for the ith

subgraph, where K  M and L  N . In order to calcu-
late the execution time ti(B,�ref ) of the ith subgraph on
the reference architecture, the columns of W i have to be
aligned so that they map on the correct column of �ref .
To achieve this, a new matrix W aligned 2 RM⇥N is con-
structed which contains the rows and columns of W i with
the correct alignment. After W aligned has been created,
the ith initiation interval matrix can be computed correctly
as IIi = W aligned ↵ �ref and used for the calculation of
ti(B,�ref ) as described in Section 5.4.
Our adoption of the SDF paradigm enables us to express

the workload alignment algebraically as described by algo-
rithm (1). In this way, the weights reloading transformation
can be applied analytically and is smoothly integrated with
the rest of the defined transformations over the SDFG.

5.6 Optimisation
The developed optimiser of our framework aims to deter-

mine a design point that optimises the performance metric
of interest for the target application given a ConvNet work-
load and the available resources. In this context, we pose
two combinatorial optimisation problems, aiming for high-
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Meeting the performance requirements



intelligent Digital Systems Lab

0 50 100 150 200 250
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DenseNet

fpgaConvNet - FPGA ZC706 FXP16 @ 125 MHz (GOp/s)

TensorRT - GPU TX1 FP16 @ 76.8 MHz (GOp/s)

• Latency-driven scenario à batch size of 1
• Up to 6.65× speedup with an average of 3.95×

(3.43× geo. mean)
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• Up to 5.53× speedup with an average of 3.32×
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fpgaConvNet vs Embedded GPU (GOp/s) for the same absolute power constraints (5W)

Comparison with Embedded GPUs: Same absolute power constraints (5W)
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• Latency-driven scenario à batch size of 1
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• Throughput-driven scenario à favourable batch size
• Average of 1.17× (1.12× geo. mean) in GOp/s/W
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Results: Comparison with existed FPGA frameworks
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Other approachesToolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 0:3

Table 1. CNN-to-FPGA Toolflows

Tool�ow Name Interface Year

fpgaConvNet [86][87][88][85] Ca�e & Torch May 2016
DeepBurning [90] Ca�e June 2016
Angel-Eye [68][23][24] Ca�e July 2016
ALAMO [58][56][57][55][59] Ca�e August 2016
H�����2 [1][2] Ca�e September 2016
D��W����� [75][76] Ca�e October 2016
Ca�eine [98] Ca�e November 2016
AutoCodeGen [54] Proprietary Input Format December 2016
F��� [84][19] Theano February 2017
FP-DNN [22] TensorFlow May 2017
Snow�ake [21][10] Torch May 2017
SysArrayAccel [91] C Program June 2017
FFTCodeGen [100][97][96][95] Proprietary Input Format December 2017

2 CNN-TO-FPGA TOOLFLOW CHARACTERISTICS
In this section, existing tool�ows are analysedwith respect to their applicability, designmethodology
and performance. The applicability to an end user is investigated based on the supported neural
network models, the input interface and the portability. The design methodology is examined based
on the hardware architecture, the design space exploration approach and the arithmetic precision
choices. Finally, the performance is analysed based on the reported results of each tool�ow.

2.1 Supported Neural Network Models
The application scope of a framework determines the range and type of applications it can target.
The majority of the existing tool�ows limit their focus on the automated mapping of CNN inference,
with F��� focusing on the more speci�c �eld of Binarised Neural Networks (BNNs) [37]. The most
common types of layers in a CNN are the convolutional (CONV), nonlinear (NONLIN), pooling
(POOL) and fully-connected (FC) layers [47]. All existing frameworks support these layers, with
ALAMO, DeepBurning, D��W����� and AutoCodeGen also supporting Local Response Normali-
sation (NORM) layers [46]. Moreover, fpgaConvNet, ALAMO and Snow�ake focus mostly on the
feature extractor part of CNNs, including CONV, NONLIN and POOL layers, and o�er unoptimised
support for FC layers by casting them as CONV layers with 1⇥1 kernels. With respect to compound,
irregular CNN building blocks, residual blocks [33] are supported by fpgaConvNet, ALAMO and
Snow�ake, Inception modules [83][82] by fpgaConvNet and Snow�ake and dense blocks [36] by
fpgaConvNet. H�����2 requires all the weights to be stored on-chip and therefore the supported
model size is constrained by the storage resources of the target device. Currently, DeepBurning
and FP-DNN demonstrate the widest range of supported applications by also supporting Recurrent
Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks [34].

2.2 Interface
2.2.1 Input. The input interface of an FPGA framework plays a decisive role in its ease-of-use

and accessibility to CNN developers. Ca�e constitutes the most widely supported front end with
support from seven of the FPGA frameworks, including fpgaConvNet, DeepBurning, Angel-Eye,
ALAMO, H�����2, D��W����� and Ca�eine, due to its structured, protobuf-based11 syntax, the
vast availability of pretrained models12 and the large user community. fpgaConvNet and Snow�ake
also provide back ends to Torch and FP-DNN has selected TensorFlow as its front end. With Theano
being the �rst framework to support BNNs, F��� supports Theano-de�ned BNNs as its input.
11https://developers.google.com/protocol-bu�ers/ 12http://ca�e.berkeleyvision.org/model_zoo.html

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: March 2018.
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Fig. 7. Overview of toolflow characteristics

Snow�ake’s design principle places programmability and high utilisation of the computational
resources at the forefront. In this respect, both Snow�ake’s architecture and compiler are tailored
to removing ine�ciencies and extracting close to peak performance from the allocated resources.
Overall, Snow�ake favours programmability over hardware specialisation, by employing a �xed
hardware design and customising with respect to the target model only at the compiler level.
Finally, FFTCodeGen addresses CNN acceleration from both an algorithmic and an architec-

tural level. In contrast to the rest of the tool�ows, convolutions are performed in the frequency
domain with a signi�cantly lower computational complexity. Moreover, the free parameters of the
algorithm and the architecture enable the generated compute engine to sustain high throughput
across convolutional layers of di�erent sizes and fully exploit the computational complexity gains.
Furthermore, the use of the powerful, server-grade CPU of the target Intel HARP platform allevi-
ates the complexities of mapping the memory-bounded fully-connected layers to hardware and
further contributes to FFTCodeGen’s throughput gains, making it suitable for throughput-driven
cloud-based applications.

2.9 Other Related Work
Apart from the presented tool�ows, several FPGA-based designs for CNNs have been proposed
by the FPGA community. These include highly optimised, hand-tuned accelerators for particular
CNN-FPGA pairs in RTL [18][16][49], HLS [6][44] and mixed RTL-HLS [101], together with designs
that focus on optimising the external memory bandwidth utilisation [5][77]. A number of existing
works lie close to the presented CNN-to-FPGA tool�ows, but lack essential components that would
form a complete automated �ow. These include [61][81][62][15], with [61][81][62] focusing on the
design space exploration task and [15] presenting an FPGA back end to Ca�e, for the execution of
3 ⇥ 3 convolutional layers by means of the Winograd transform.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: March 2018.

Stylianos I. Venieris, Alexandros Kouris and Christos-Savvas Bouganis, "Toolflows for Mapping 
Convolutional Neural Networks on FPGAs: A Survey and Future Directions", ACM Computing Surveys, 2018
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Challenge #2: Multi-CNN Systems – Autonomous Drones
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The Problem setting and Challenges

Given a number of CNNs: 
CNN1, CNN2, …, CNNN

find a mapping to an FPGA device that meets user requirements such 
as Latency and Throughout per CNN

(Extra) Challenges:
• Resource allocation per CNN
• Memory Bandwidth allocation per CNN
• Scalability
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Challenge #2: Multi-DNN System

Challenges:
• Resource allocation among CNNs
• Design automation
• Models with different performance 

constraints, e.g. required throughput and 
latency

• Competing for the same pool of 
resources

• High-dimensional design space

Set of CNNs
Target Platform 
Specifications

Per-CNN 
Performance 
Requirements

Supplied by 
Deep Learning Expert

Optimised
Mapping

F-CNNx
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Key characteristics

• One hardware engine per CNN – highly customisable

• Hardware scheduler to control memory access schedule

Multi-CNN Hardware Architecture
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Key characteristics
• One hardware engine per CNN – highly customisable
• Hardware scheduler to control memory access schedule

Multi-CNN Hardware Architecture
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Pipeline structure Γ"

Parameter Symbol



intelligent Digital Systems Lab

Multi-CNN Hardware Architecture

37

Key characteristics
• One hardware engine per CNN – highly customisable
• Hardware scheduler to control memory access schedule

Pipeline structure Γ"

Parameter Symbol
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S

Multi-CNN Hardware Architecture

Key characteristics
• One hardware engine per CNN – highly customisable
• Hardware scheduler to control memory access schedule
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Pipeline structure Γ"

Parameter Symbol
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Proposed Design Space Exploration Method

Target set of CNNs
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Proposed Design Space Exploration Method

On-chip Resource Feasibility

Off-Chip 
Memory

Off-Chip 
Memory
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Off-Chip Memory

An example

CONV7x
7

ReLU MAX POOL
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CONV3x
3

ReLU MAX POOL

CONV
3x3

ReLU

CNN2

For each CNN 
− A set of subgraphs
− Bandwidth requirements

Possible memory contention
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Proposed Design Space Exploration Method

• Memory contention

• Problem 1: Performance model =! Actual 
performance (scheduler)

• Problem 2: Not full utilization of the memory 
bandwidth

• CNN inference over a stream of inputs

− Cast to a cyclic scheduling problem
− Search for a periodic solution

• Optimal ILP scheduler has very high runtimes for large-sized 

problems

• We propose a heuristic Resource Constrained List Scheduler 
(RCLS).
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Slow-down Scheduler
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• Increase the latency and 
decrease the bandwidth 
proportionally

• One slow-down factor per 
subgraph

Latency Increase

Bandwidth Decrease
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The effect of slow-downs
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• 3-CNN benchmark on ZC706

• Explored joint design points appear in triplets
− Blue à peak platform-supported performance per CNN
− Red à contention-unaware design
− Yellow à memory-aware design

Effect of the Proposed DSE

Memory-aware 
scheduling

Memory-unaware 
scheduling

Full platform available bandwidth for each CNN engine

45
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Comparison with Embedded GPUs

46

• Latency-driven scenario à batch size of 1

• Up to 19.09× speedup with an average of 
6.85× (geo. mean)
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• Latency-driven scenario à batch size of 1

• Up to 9.61× speedup with an average of 
2.76× (geo. mean)
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Conclusions

• Performance (efficiency) comes from customisation

• ML applications:
• Fast moving area => new computational blocks appear frequently
• Diverse application areas (ADAS, drones, Video analytics)

• To improve hardware’s efficiency 
=> highly customisable architecture 

=> large design space

• Need for Tools
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Summary

Research topics

Mapping Automation

Multiple CNN Mapping

Time-constrained Inference

Privacy-aware Deep Learning

www.imperial.ac.uk/idsl

A. Kouris and C-S Bouganis, "Learning to Fly by MySelf: A Self-Supervised 
CNN-based Approach for Autonomous Navigation", IROS, 2018
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