

fpgaConvNet: A Toolflow for Mapping Convolutional Neural Networks on Embedded FPGAs

Dr. Christos-Savvas Bouganis

Marionet UK Many-core Research Network 11th of September, Bristol University, UK

www.imperial.ac.uk/idsl

The team

Íntelligent Digital Systems Lab

Aug 4, 2018

Stylianos I. Venieris Machine Learning

Manolis Vasileiadis **Computer Vision**

Mudhar Bin Rabieah

Machine Learning

Nur Ahmadi **Brain-Machine Interface**

1 INTRODUCTION

and Nationalist per becoming the stan-of-

S. CARCARD CAS

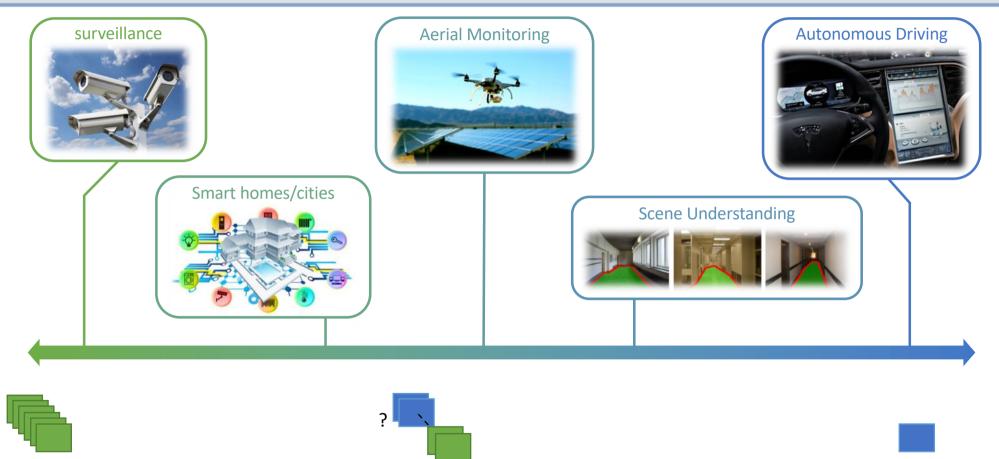
Konstantinos Boikos

Computer Vision,

Christos-Savvas Bouganis iDSL Lab Director Imperial College London

Íntelligent Digital Systems Lab

DNNs in the Embedded Space – Variability in Performance Requirements



High-Throughput Applications

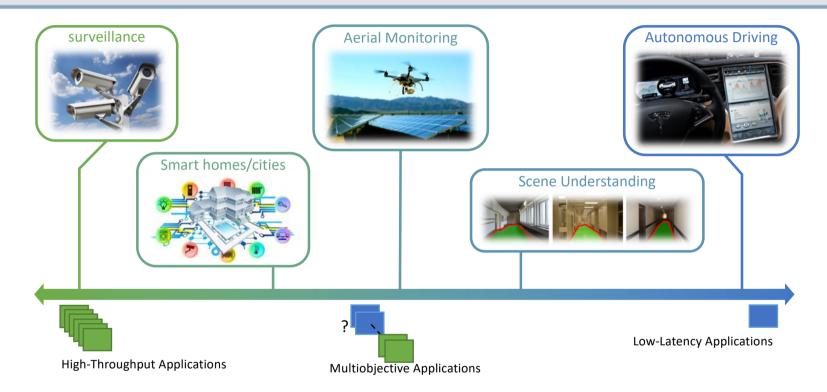
Multiobjective Applications

Low-Latency Applications

3

Íntelligent Digital Systems Lab

DNNs in the Embedded Space – Variability in Performance Requirements



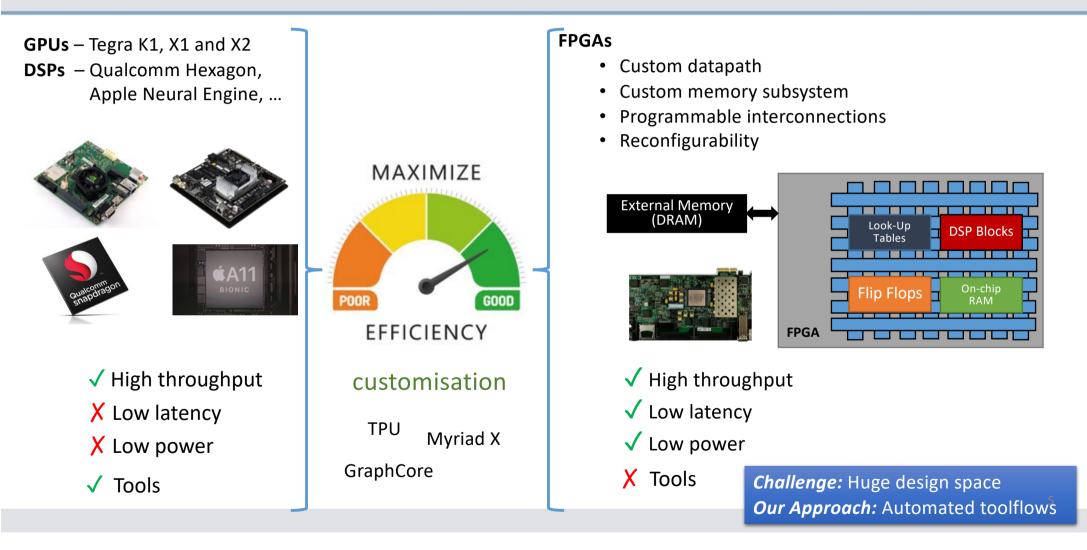
Power constraints

- Absolute power consumption
- Performance-per-Watt

Imperial College

Íntelligent Digital Systems Lab

Conventional and Unconventional Embedded Platforms for Neural Networks



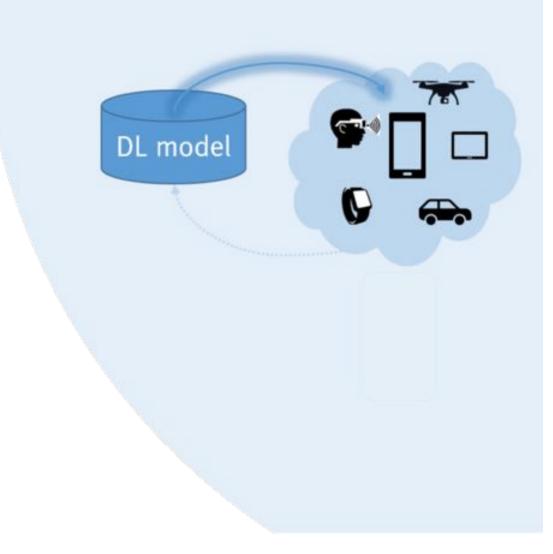
Research Areas / Challenges

Íntelligent Digital Systems Lab

Mapping Automation

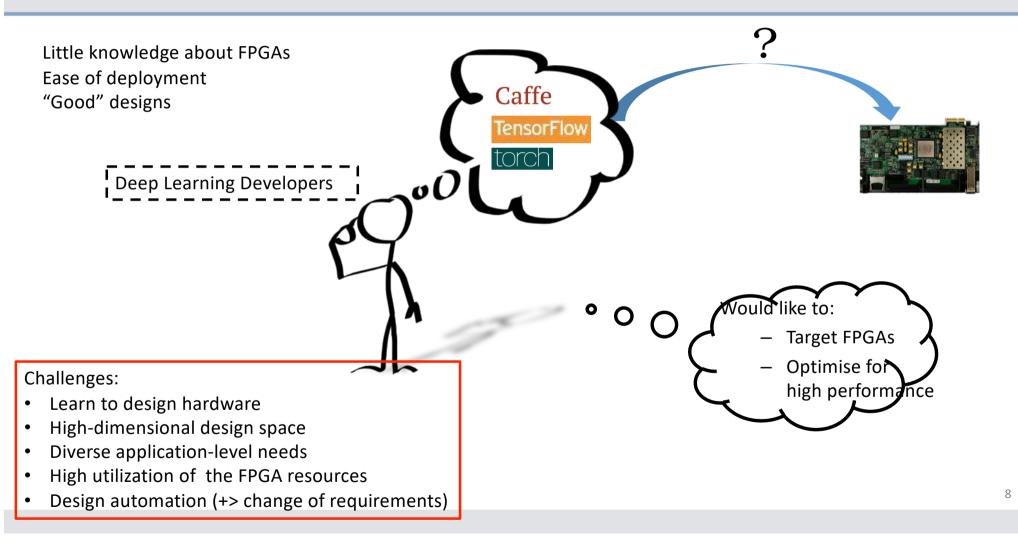
Multiple CNN Mapping

Challenge #1: Mapping Automation



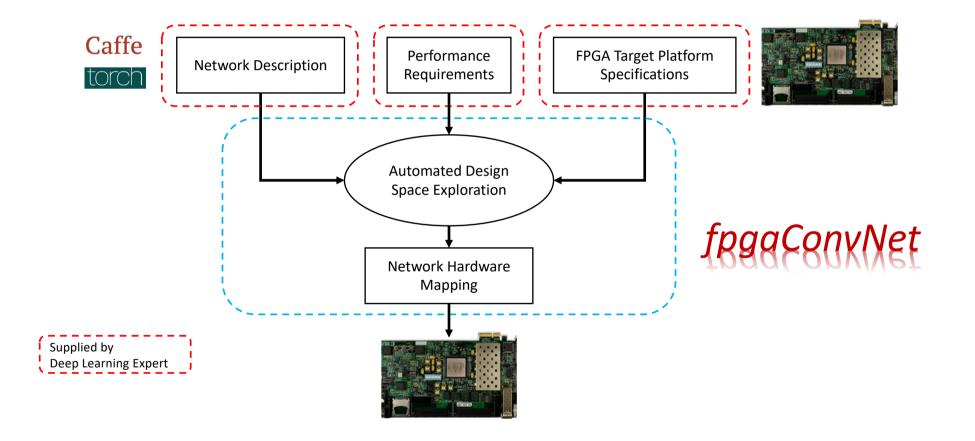
Íntelligent Digital Systems Lab

Challenge #1: Mapping Automation



Íntelligent Digital Systems Lab

Challenge #1: Automated CNN-to-FPGA Toolflow



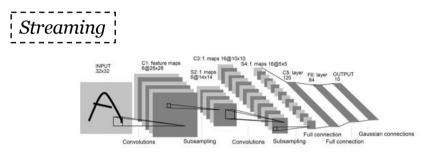
Imperial College

fpgaConvNet – CNN Modelling Framework

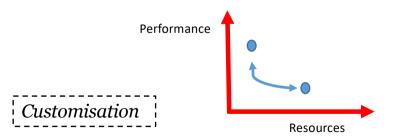
Key Characteristics

- Differentiation factors:
 - Streaming architecture
 - Hardware design tailored to the target CNN
 - No limit on #weights, or size of CNN
- Synchronous Dataflow Modelling for CNNs
 - CNN as a data-driven graph
 - Workload is represented as a matrix
 - Each layer mapped to a tunable set of hardware building blocks
- Design space exploration based on **transformations**
 - Coarse-grained folding
 - Fine-grained folding
 - Graph partitioning with reconfiguration
 - Weight Reloading

Íntelligent Digital Systems Lab

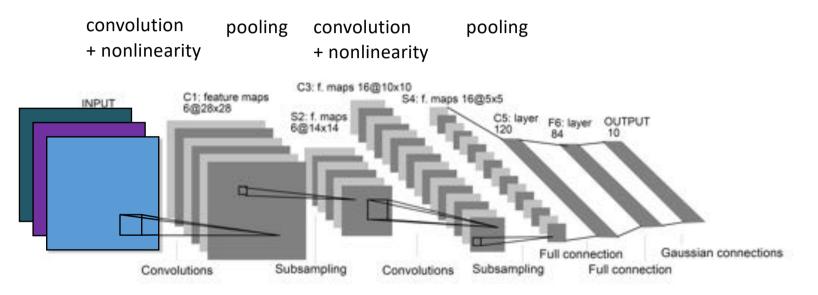


Analytical PowerMax Throughput or Min Latency $t_{total}(B, N_P, \mathbf{\Gamma}) = \sum_{i=1}^{N_P} t_i(B, \mathbf{\Gamma}_i) + (N_P - 1) \cdot t_{reconfig.}$



Íntelligent Digital Systems Lab

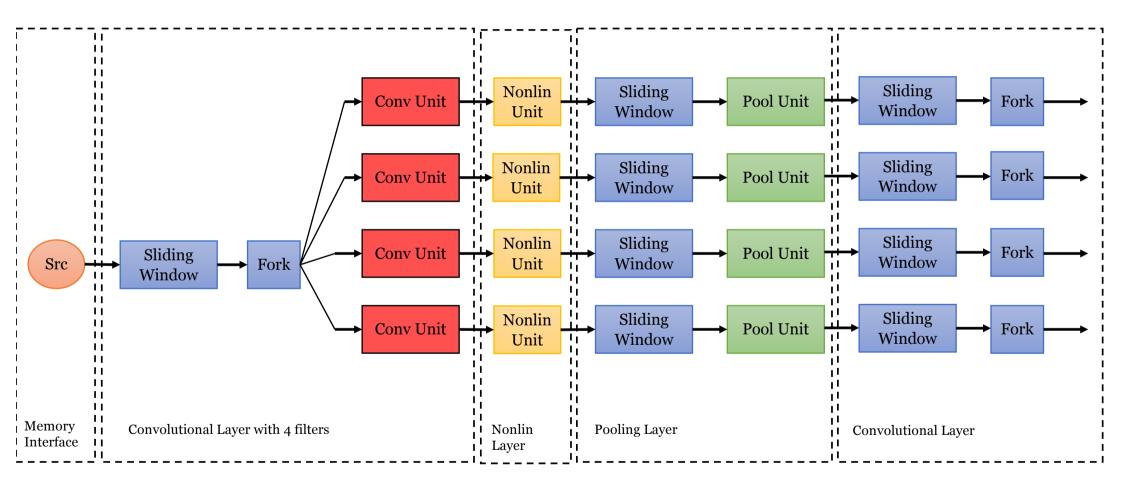
Under the hood: Convolutional Neural Networks (ConvNets)



- ConvNet Inference
 - Tailored to images and data with spatial patterns
 - Built as a sequence of layers (Convolutional, Nonlinearity and Pooling Layer)

Intelligent Digital Systems Lab

fpgaConvNet – Streaming Architecture for CNNs



Imperial College

fpgaConvNet – Streaming Architecture for CNNs

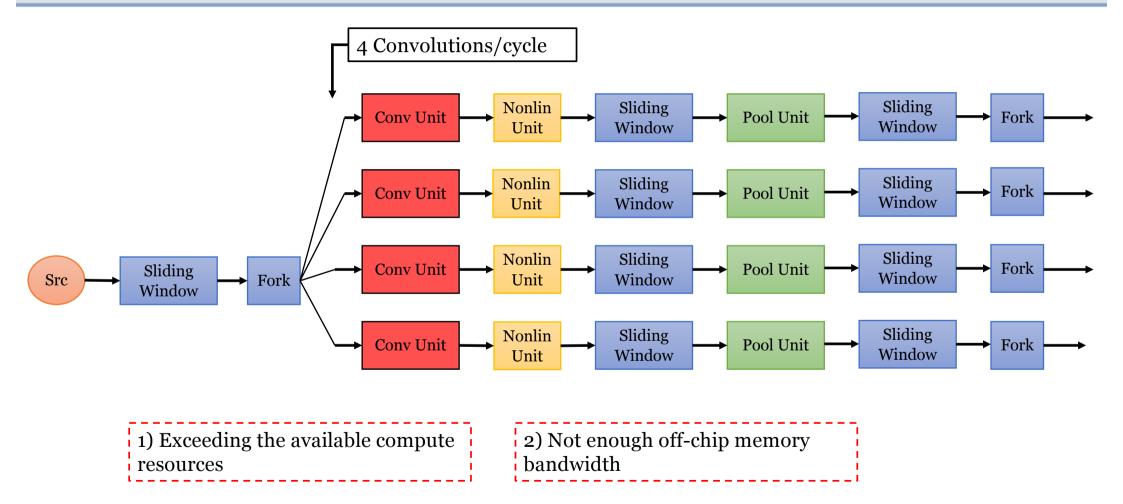
80 Inception-v3 ResNet-152 CNN Hardware SDF Graph VGG-16 VGG-19 ResNet-34 [%] /OEJ ResNet-18 00 Sliding GoogLeNe Sliding Nonlin Pool Unit ENet Fork Window Window fop-1 accu Unit BN-NIN Sliding Sliding Conv Nonlin 125M Pool Unit Fork Window Window Unit Unit BN-AlexNet 55 AlexNet Sliding Nonlin Sliding Conv Sliding Fork Pool Unit Window ➡ Fork Window Window 10 20 25 30 35 Operations [G-Ops] Sliding Window Sliding Conv Unit Nonlin Pool Unit Fork Unit Window **Design Space** 6 5 FPGA 1 Throughput Complex Model → Bottlenecks: 4 Current Design - Limited *compute resources* 3 Point Limited *on-chip memory capacity* for model parameters FPGA 2 — 2 Limited off-chip memory bandwidth — 1 0 0 5 10 Resources Define a set of graph transformations to traverse the design space in **fast** and **principled** way

Íntelligent Digital Systems Lab

Inception-v4

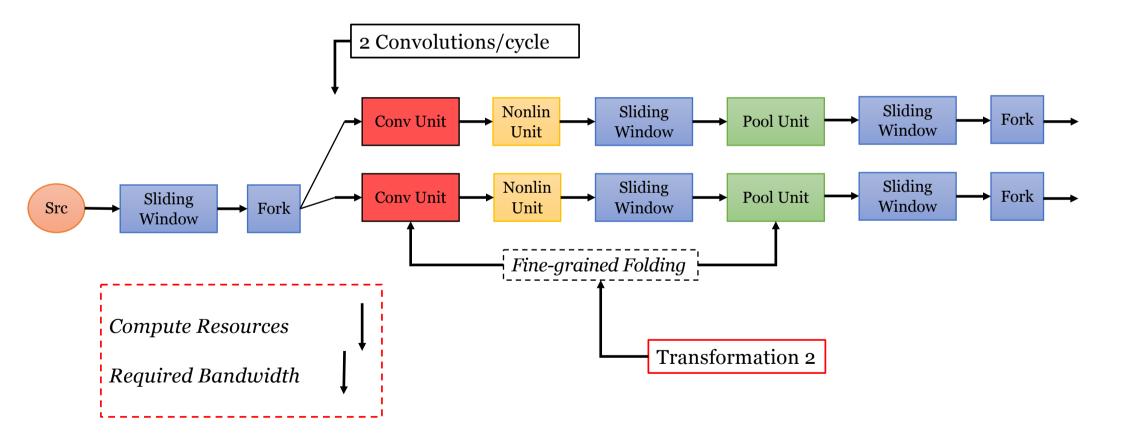
Íntelligent Digital Systems Lab

Transformation 1: Coarse-grained Folding

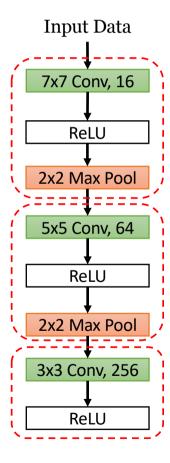


Intelligent Digital Systems Lab

Transformation 1: Coarse-grained Folding

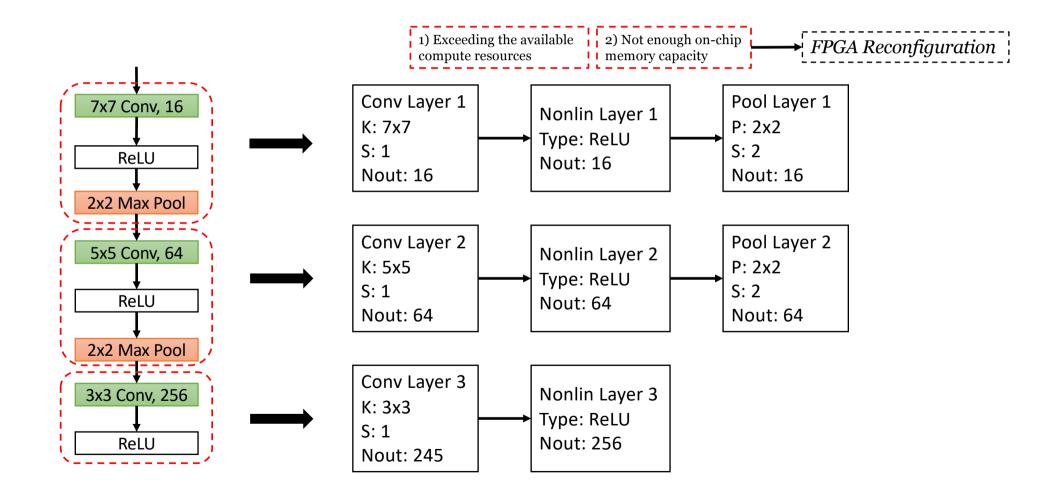


Intelligent Digital Systems Lab

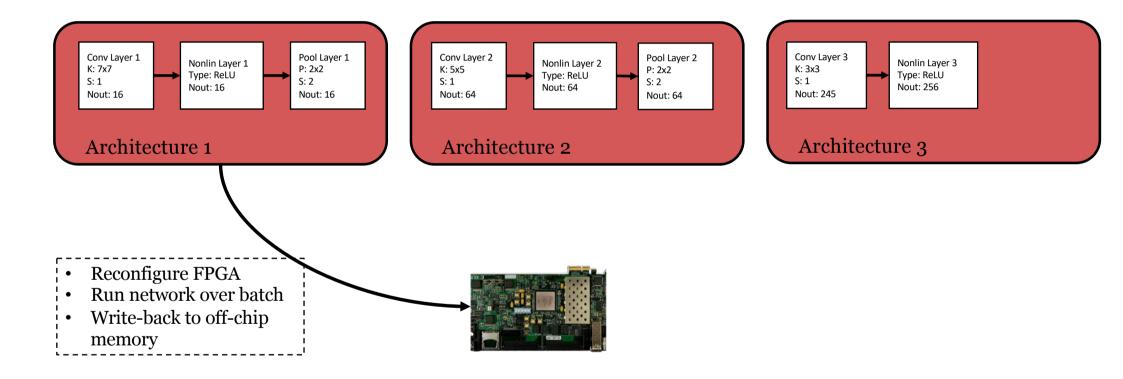


1) Exceeding the available (2) Not enough on-chi	ip
compute resources memory capacity	→ FPGA Reconfiguration

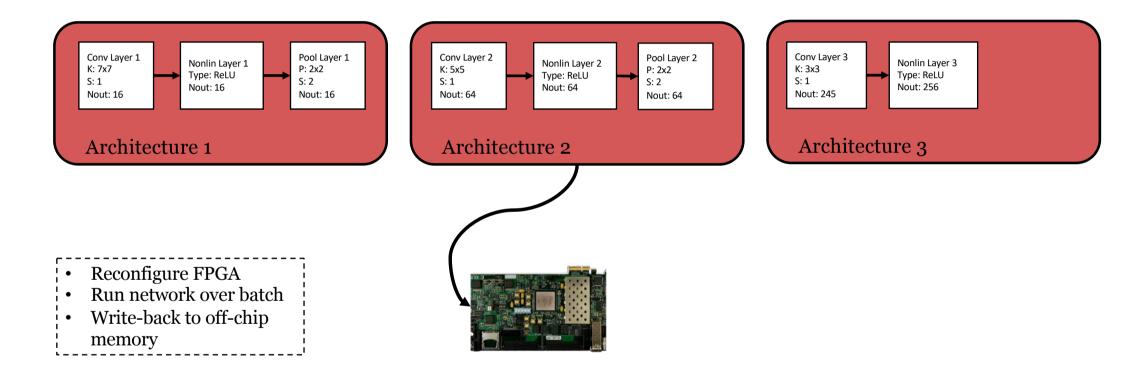
Íntelligent Digital Systems Lab



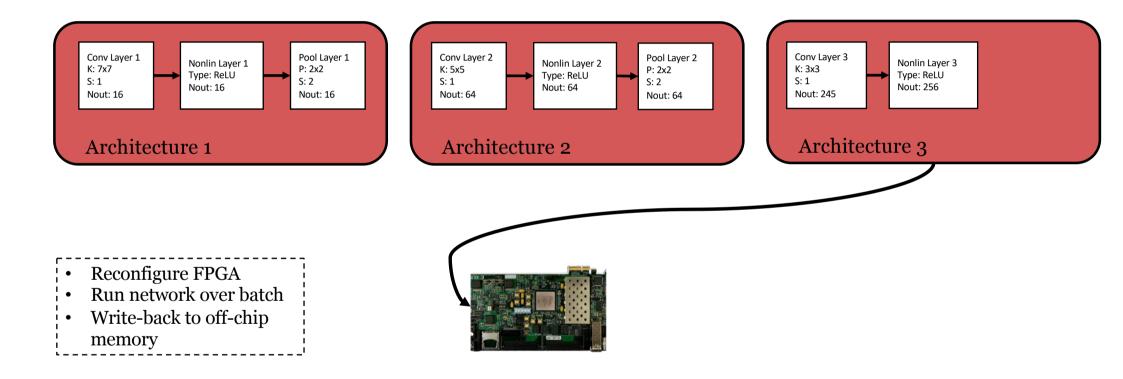
Intelligent Digital Systems Lab



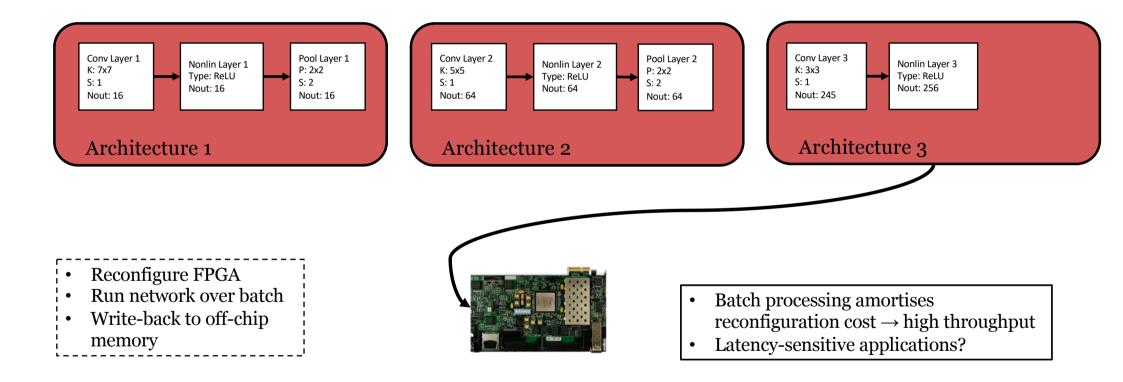
Intelligent Digital Systems Lab



Intelligent Digital Systems Lab

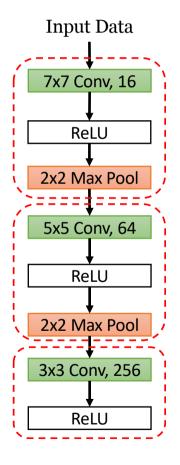


Intelligent Digital Systems Lab

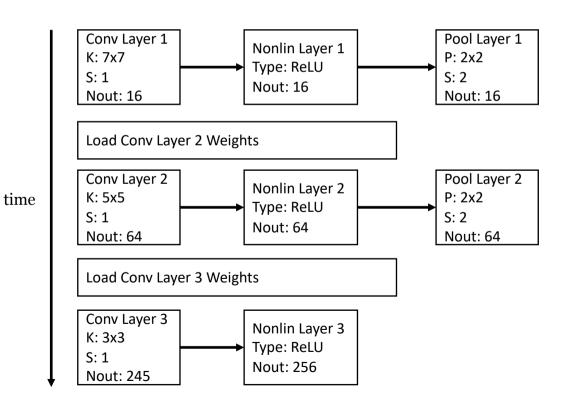


Intelligent Digital Systems Lab

Transformation 4: Weights Reloading

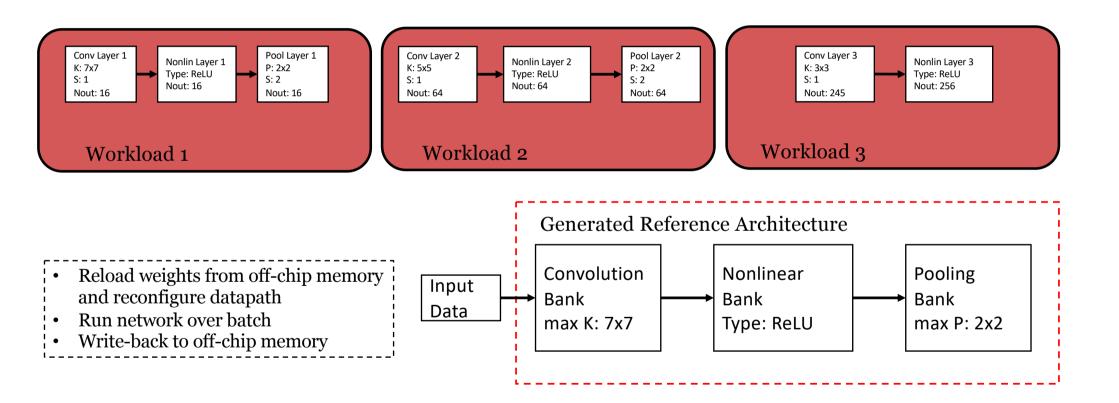


Run-time vs bitstream-level reconfiguration to explore the latency-throughput trade-off



Íntelligent Digital Systems Lab

Transformation 4: Weights Reloading

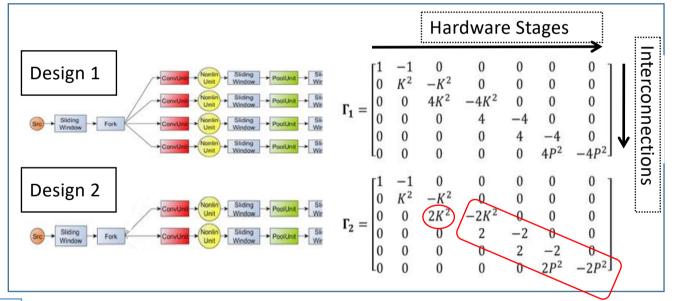


Íntelligent Digital Systems Lab

fpgaConvNet – Design Space Exploration and Optimisation

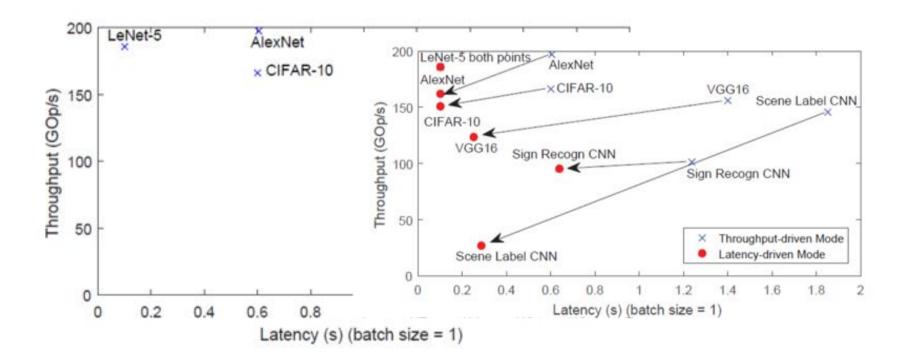
- SDF-based Framework
 - Capture hardware mappings as matrices
 - Transformations as *algebraic operations*
 - Any local transformation *propagates* through the network
 - Static Scheduling
 - Analytical performance model
 - Cast design space exploration as a multiobjective optimization problem

 $t_{total}(B, N_P, \mathbf{\Gamma}) = \sum_{i=1}^{N_P} t_i(B, \mathbf{\Gamma}_i) + (N_P - 1) \cdot t_{reconfig.}$



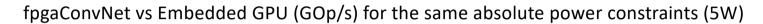
Intelligent Digital Systems Lab

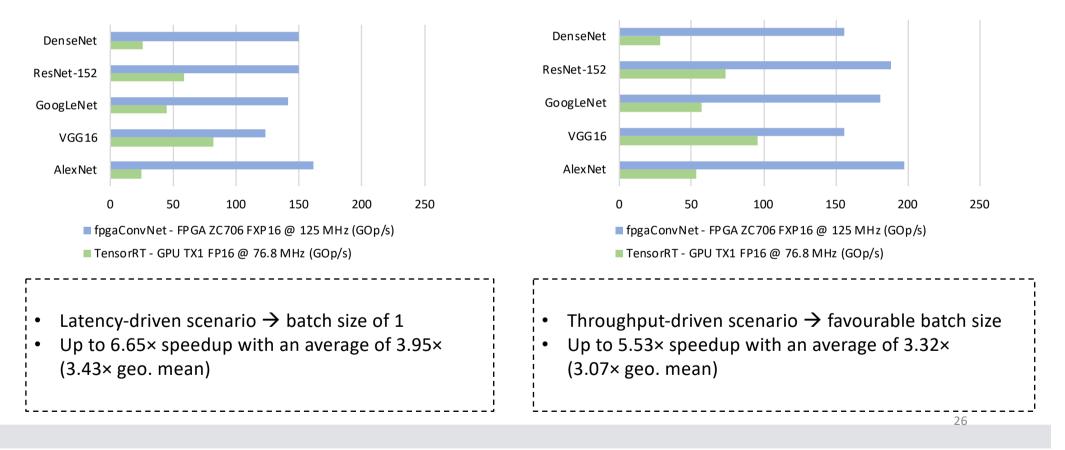
Meeting the performance requirements



Íntelligent Digital Systems Lab

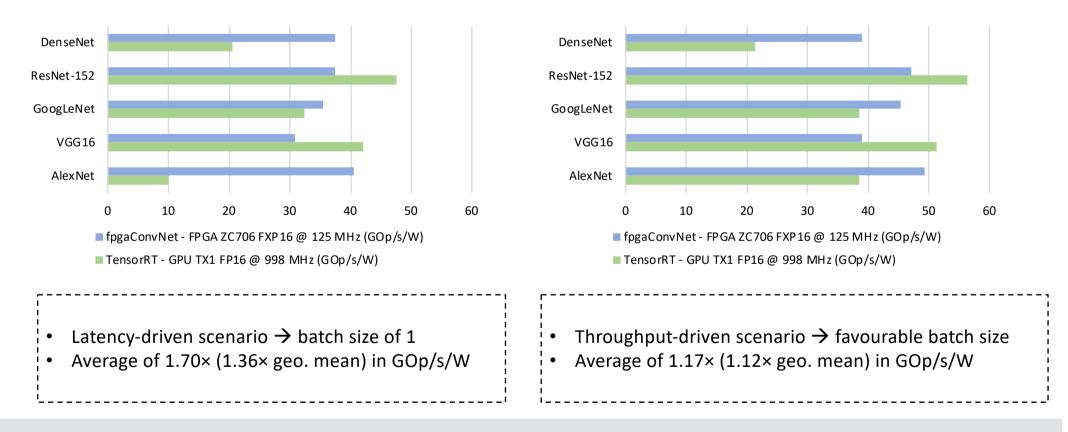
Comparison with Embedded GPUs: Same absolute power constraints (5W)





Íntelligent Digital Systems Lab

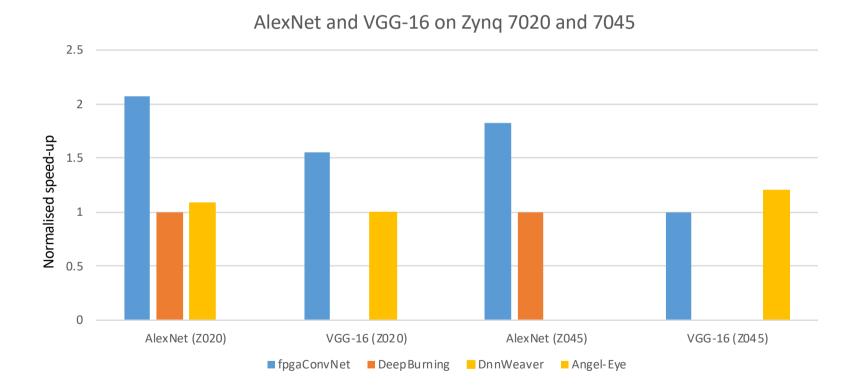
Comparison with Embedded GPUs: Performance-per-Watt



fpgaConvNet vs Embedded GPU (GOp/s/W)

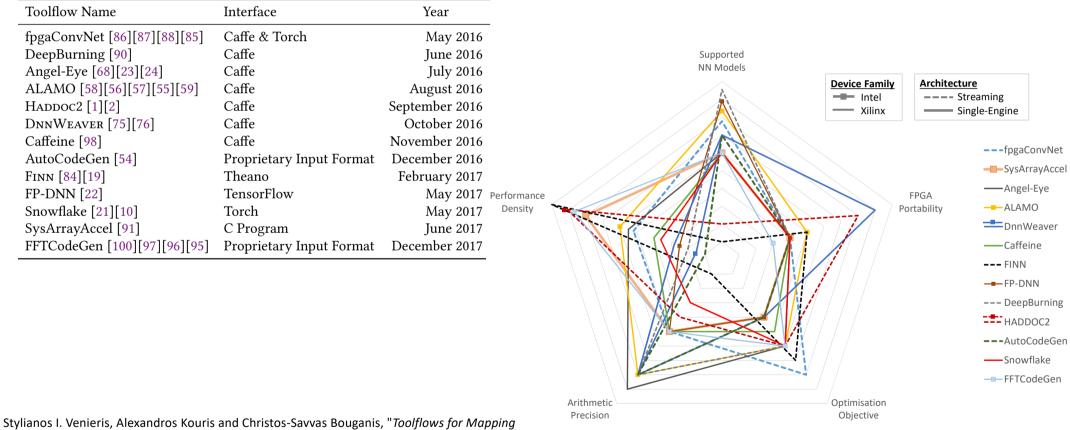
Íntelligent Digital Systems Lab

Results: Comparison with existed FPGA frameworks



Other approaches

Íntelligent Digital Systems Lab



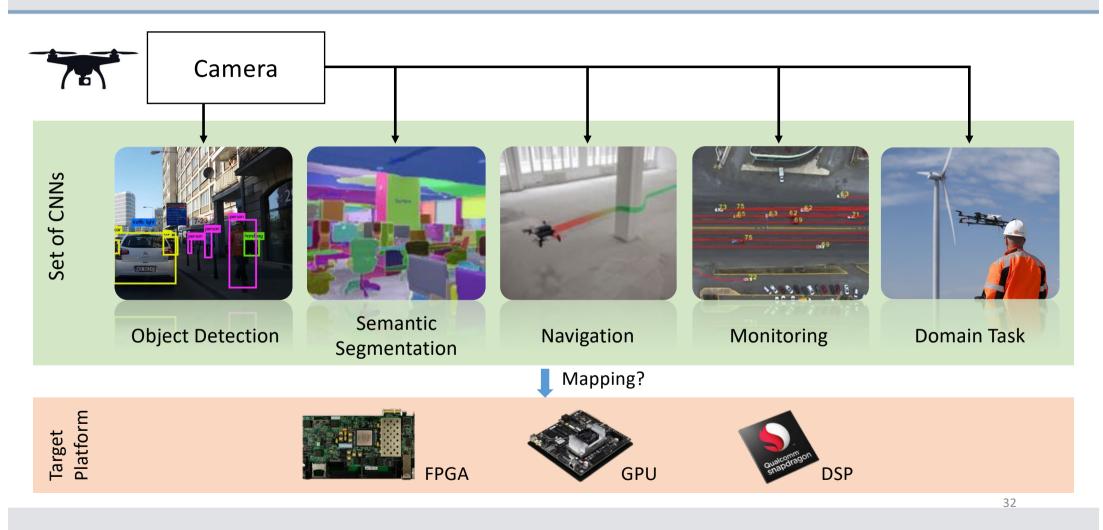
Convolutional Neural Networks on FPGAs: A Survey and Future Directions", ACM Computing Surveys, 2018

Challenge #2: Multi-CNN Systems

Imperial College

Íntelligent Digital Systems Lab

Challenge #2: Multi-CNN Systems – Autonomous Drones



Íntelligent Digital Systems Lab

The Problem setting and Challenges

Given a number of CNNs:

 CNN_1 , CNN_2 , ..., CNN_N

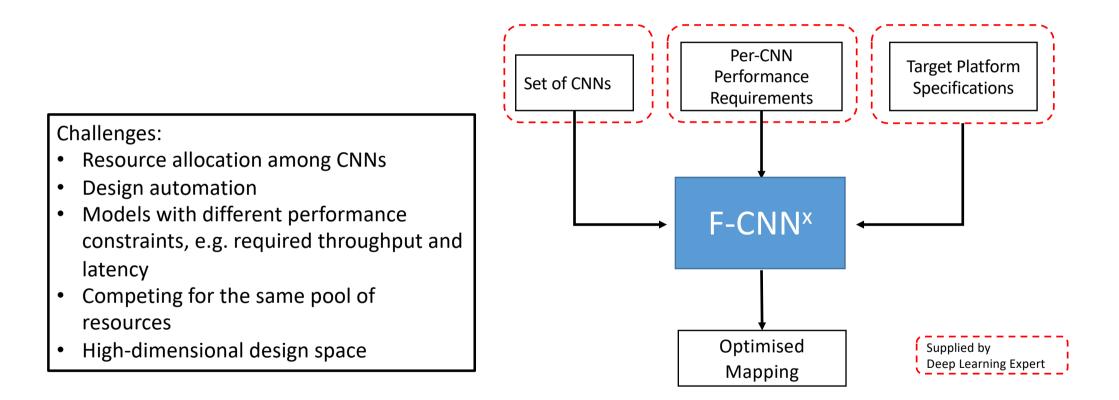
find a mapping to an FPGA device that meets user requirements such as Latency and Throughout per CNN

(Extra) Challenges:

- Resource allocation per CNN
- Memory Bandwidth allocation per CNN
- Scalability

Imperial College London Challenge #2: Multi-DNN System

Íntelligent Digital Systems Lab

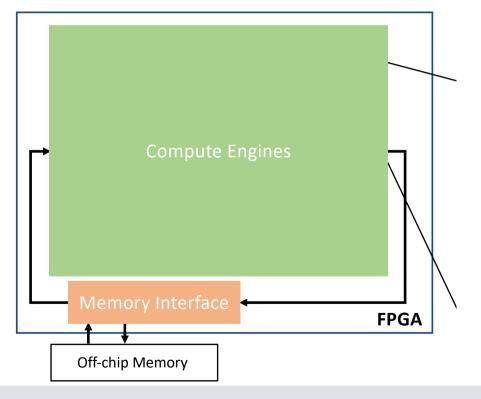


Íntelligent Digital Systems Lab

Multi-CNN Hardware Architecture

Key characteristics

- One hardware engine per CNN highly customisable
- Hardware scheduler to control memory access schedule

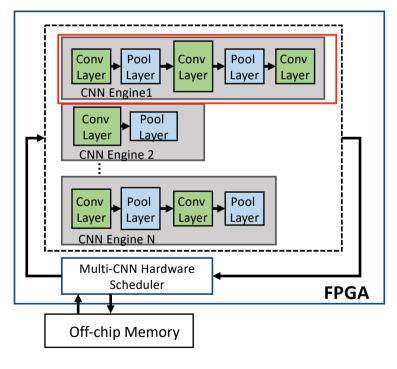


Íntelligent Digital Systems Lab

Multi-CNN Hardware Architecture

Key characteristics

- One hardware engine per CNN highly customisable
- Hardware scheduler to control memory access schedule



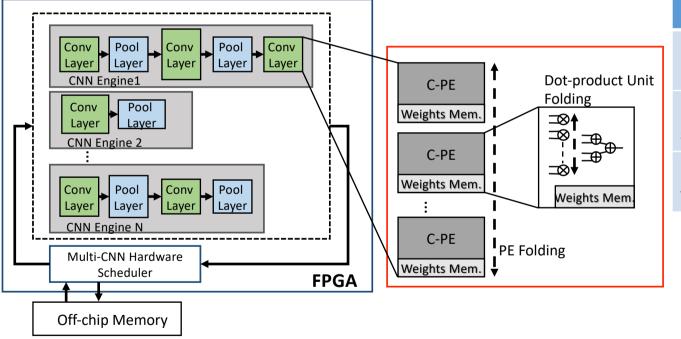
Parameter	Symbol
Pipeline structure	Γ_i

Íntelligent Digital Systems Lab

Multi-CNN Hardware Architecture

Key characteristics

- One hardware engine per CNN highly customisable
- Hardware scheduler to control memory access schedule



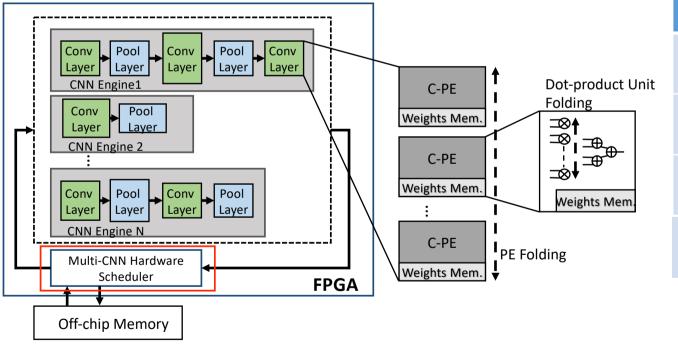
Parameter	Symbol
Pipeline structure	Γ_i
No. of PEs in each stage	N _{PE} , <i>i,j</i>
No of MAC operators within each PE	N _{op,<i>i,j</i>}

Íntelligent Digital Systems Lab

Multi-CNN Hardware Architecture

Key characteristics

- One hardware engine per CNN highly customisable
- Hardware scheduler to control memory access schedule



Parameter	Symbol
Pipeline structure	Γ_i
No. of PEs in each stage	N _{PE,<i>i,j</i>}
No of MAC operators within each PE	N _{op,<i>i,j</i>}
Schedule	S

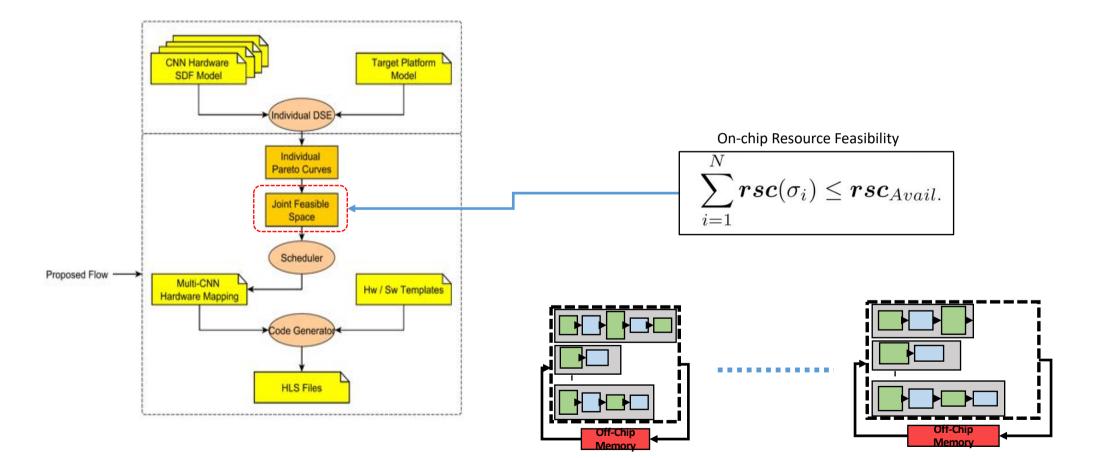
Proposed Design Space Exploration Method

Target Platform **CNN Hardware** SDF Model Model 10-3 Valid Design Space Explored Valid Design Space Explored 10-3 Valid Design Space Explored 10-3 Individual DSE 3.5 × 10⁻³ Valid Design Space Explored ~ Individual 3 Pareto Curves × 2.5 Joint Feasible xecution Time (s) Space 2 Scheduler Proposed Flow ŵ Multi-CNN Hw / Sw Templates Hardware Mapping 0.5 Code Generato 0 0 10 20 30 50 60 40 Target set of CNNs Area (%) **HLS Files**

Íntelligent Digital Systems Lab

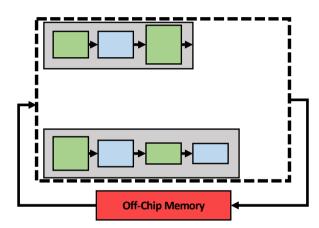
Proposed Design Space Exploration Method

Íntelligent Digital Systems Lab



An example

Íntelligent Digital Systems Lab



CNN1 CONV_{7x} MAX POOL ReLU CONV MAX POOL ReLU 5x5 CONV ReLU 5x5 CNN2 *СОNV*₃*x* MAX POOL ReLU CONV ReLU 3x3

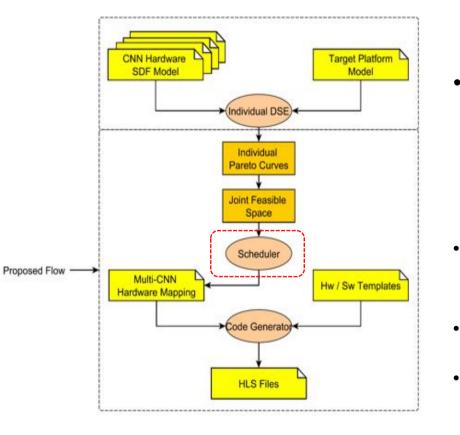
For each CNN

- A set of subgraphs
- Bandwidth requirements

Possible memory contention

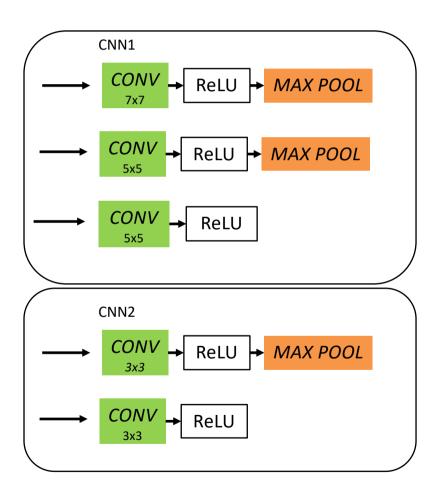
Íntelligent Digital Systems Lab

Proposed Design Space Exploration Method



- Memory contention
 - Problem 1: Performance model =! Actual performance (scheduler)
 - Problem 2: Not full utilization of the memory bandwidth
- CNN inference over a stream of inputs
 - Cast to a cyclic scheduling problem
 - Search for a periodic solution
- Optimal ILP scheduler has very high runtimes for large-sized problems
- We propose a heuristic Resource Constrained List Scheduler (RCLS).

Slow-down Scheduler



Íntelligent Digital Systems Lab

- Increase the latency and decrease the bandwidth proportionally
- One slow-down factor per subgraph

$$L'(s_{i,j}) = \frac{1}{sl_{i,j}} \times L(s_{i,j})$$
$$b'(s_{i,j}) = sl_{i,j} \times b(s_{i,j})$$

Latency Increase

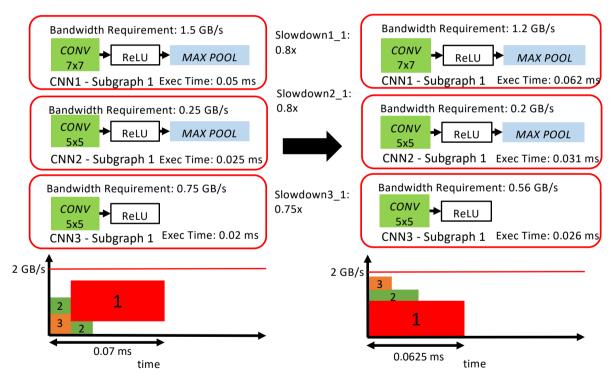
Bandwidth Decrease

Íntelligent Digital Systems Lab

The effect of slow-downs

Scheduler

Scheduler + slow downs



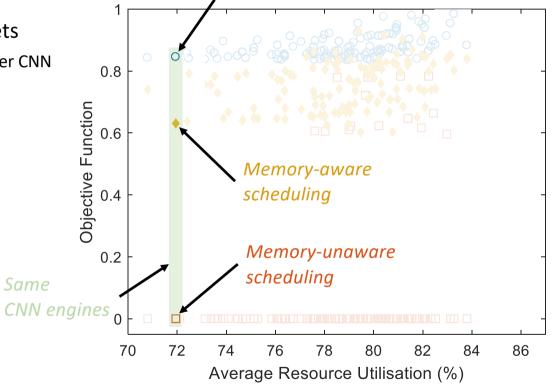
Available Memory Bandwidth: 2 GB/s

Effect of the Proposed DSE

- 3-CNN benchmark on ZC706
- Explored joint design points appear in triplets

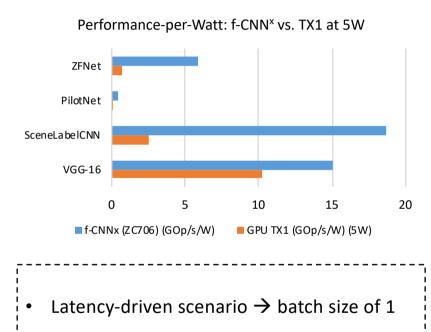
 Blue → peak platform-supported performance per CNN
 Red → contention-unaware design
 Yellow → memory-aware design

Íntelligent Digital Systems Lab



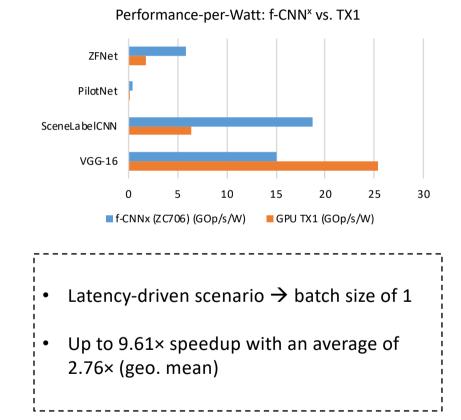
Full platform available bandwidth for each CNN engine

Íntelligent Digital Systems Lab



Comparison with Embedded GPUs

 Up to 19.09× speedup with an average of 6.85× (geo. mean)



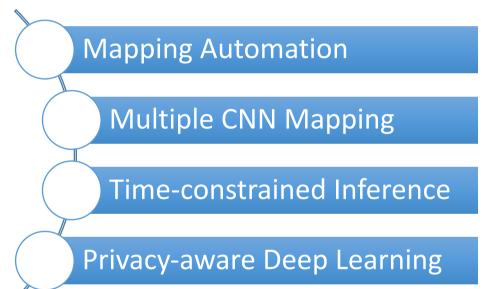
Conclusions

- Performance (efficiency) comes from customisation
- ML applications:
 - Fast moving area => new computational blocks appear frequently
 - Diverse application areas (ADAS, drones, Video analytics)
- To improve hardware's efficiency
 => highly customisable architecture
 => large design space
- Need for Tools

Imperial College London Summary

Íntelligent Digital Systems Lab

Research topics



A. Kouris and C-S Bouganis, "Learning to Fly by MySelf: A Self-Supervised CNN-based Approach for Autonomous Navigation", IROS, 2018

www.imperial.ac.uk/idsl

Imperial College London Publications

Lintelligent Digital Systems Lab

www.imperial.ac.uk/idsl

- Alexandros Kouris, Stylianos I. Venieris, and Christos-Savvas Bouganis. 2018. CascadeCNN: Pushing the performance limits of quantisation. In SysML.
- Alexandros Kouris, Stylianos I. Venieris, and Christos-Savvas Bouganis. 2018. CascadeCNN: Pushing the Performance Limits of Quantisation in Convolutional Neural Networks. In 2018 28th International Conference on Field Programmable Logic and Applications (FPL).
- C. Kyrkou, G. Plastiras, T. Theocharides, S. I. Venieris, and C. S. Bouganis. 2018. *DroNet: Efficient Convolutional Neural Network Detector for Real-Time UAV Applications.* In 2018 Design, Automation Test in Europe Conference Exhibition (DATE). 967–972.
- Michalis Rizakis, Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018. Approximate FPGA-based LSTMs under Computation Time Constraints. In Applied Reconfigurable Computing - 14th International Symposium, ARC 2018, Santorini, Greece, May 2 - 4, 2018, 3–15.
- Stylianos I. Venieris and Christos-Savvas Bouganis. 2016. *fpgaConvNet: A Framework for Mapping Convolutional Neural Networks on FPGAs.* In 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 40–47.
- Stylianos I. Venieris and Christos-Savvas Bouganis. 2017. *fpgaConvNet: A Toolflow for Mapping Diverse Convolutional Neural Networks on Embedded FPGAs.* In NIPS 2017 Workshop on Machine Learning on the Phone and other Consumer Devices.
- Stylianos I. Venieris and Christos-Savvas Bouganis. 2017. *fpgaConvNet: Automated Mapping of Convolutional Neural Networks on FPGAs* (Abstract Only). *In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 291–292.*
- S. I. Venieris and C. S. Bouganis. 2017. *Latency-Driven Design for FPGA-based Convolutional Neural Networks*. In 2017 27th International Conference on Field Programmable Logic and Applications (FPL).
- S. I. Venieris and C. S. Bouganis. 2018. *f-CNNx: A Toolflow for Mapping Multiple Convolutional Neural Networks on FPGAs.* In 2018 28th International Conference on Field Programmable Logic and Applications (FPL).
- Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018. Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions. In ACM Computing Surveys 51, 3, Article 56 (June 2018), 39 pages.